《自然∙通讯》报道量子中心王健研究组及合作者的最新成果:反常量子格里菲思奇异性的发现
近期,公司量子材料中心王健研究组在硅衬底上外延生长了高质量超薄晶态铅膜,与公司谢心澄院士、林熙研究员和北京师范大学刘海文研究员合作在极低温下观测到反常量子格里菲斯奇异性,并给出理论解释。这一发现揭示了超导涨落与自旋轨道耦合效应对于量子相变的重要影响,揭示出量子格里菲斯奇异性在二维超导金属相变中的普适性。
超导-绝缘体与超导-金属相变是量子相变的经典范例,已有三十余年的研究历史。所谓量子相变,是指在绝对零度下系统处于量子基态时随着参数变化而发生的相变。近年来,随着薄膜和器件制备工艺的提高,二维晶态超导体系逐渐成为了研究量子相变的理想平台,得到了国际学术界的广泛关注。王健研究组与谢心澄院士、马旭村研究员、林熙研究员、薛其坤院士等合作者在前期二维超导的相关研究中发现了超导-金属相变中的量子格里菲斯奇异性 (Science 350, 542 (2015)), 并被同期perspective评论文章Science 350, 509 (2015)专题报道。随后被液态栅极技术发明人东京大学Iwasa教授的综述文章Nature Reviews Materials 2, 16094 (2016)誉为二维晶态超导中三个最重要的主题之一。量子格里菲斯奇异性的研究表明,无序可以定性地改变量子相变的临界行为,其主要特征是趋于量子临界点时,二维超导体系的动力学临界指数发散。
最近,王健研究组通过超高真空分子束外延生长技术在硅衬底上制备出宏观尺度高质量晶态薄膜,并实现了厚度为亚纳米尺度的原子层级可控生长。在此基础上,王健教授与谢心澄院士、林熙研究员、刘海文研究员等人合作,在4个原子层厚(约1纳米)的晶态铅膜中发现了一种具有反常相边界的超导-金属相变,并揭示了其中的反常量子格里菲斯奇异性。根据平均场理论,超导体的上临界场会随着温度降低而逐渐增加。然而,系统的极低温实验表明,4个原子层厚的铅膜的相边界在低温下具有非常新奇的反常特性:随着温度降低,铅膜的上临界场(onset Bc2)在低温下也逐渐降低。沿着反常相边界对铅膜的磁阻曲线进行标度理论分析发现,在趋近于量子临界点附近临界指数随着磁场减小而迅速增大直至发散,该现象与前期实验中发现的临界指数随着磁场增大而发散的行为不同,故称为反常量子格里菲斯奇异性。考虑到这类二维超导体系具有很强的自旋轨道耦合,研究团队基于超导涨落理论发展了一套新的唯象理论模型,定量地解释了这一反常相边界。在自旋轨道耦合与超导涨落效应的共同作用下,超导-金属相边界偏离平均场理论而向外突出,并在反常相边界处呈现出量子格里菲斯奇异性。这一新奇量子相变的发现,证实了量子格里菲斯奇异性在不同相边界的超导-金属相变中具有普适性,并进一步揭示出自旋轨道耦合与超导涨落效应对于超导-金属相变的影响,为深入理解二维晶态超导体中的量子相变现象提供了一个新的视角。
|
|
图1 四个原子层厚晶态铅膜中的反常量子格里菲斯奇异性。(a) 铅膜在零磁场下的超导转变曲线。插图是输运测量结构示意图。(b) 在0到5特斯拉不同外加磁场下铅膜电阻随温度的变化曲线。 (c) 铅膜在低温下表现出反常相边界,与超导涨落唯象理论模型一致。 (d) 临界指数随着磁场减小而迅速增大,直至发散,是反常量子格里菲斯奇异性的特征。
| 图2 反常量子格里菲斯奇异性相图示意图。在自旋轨道耦合和超导涨落的作用下,平均场理论的相边界(蓝色虚线)向外突出形成新的相边界(红色实线)。当温度低于T^'时,红色实线代表反常相边界。沿着反常相边界趋于无限随机量子临界点B_c^*可以观测到反常量子格里菲斯奇异性。
|
该工作于2019年8月12日发表于著名学术期刊《自然∙通讯》。(Nature Communications 10, 3633 (2019) DOI: 10.1038/s41467-019-11607-w):https://www.nature.com/articles/s41467-019-11607-w
公司王健研究组博雅博士后刘易和研究生王子乔为文章共同第一作者,公司王健教授和北京师范大学刘海文研究员是本文的共同通讯作者。其余作者包括谢心澄院士,林熙研究员,以及王健研究组本科生唐钺、博士生刘超飞、陈澄、邢颖(已毕业)、博士后王庆艳(已出站),和林熙组博士生闪普甲。
该工作得到了国家重点研发计划、国家自然科学基金、量子物质科学协同创新中心、中科院卓越创新中心、北京市自然科学基金、博士后科学基金、中央高校基本科研基金的支持。